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Papers
“Deriving intrinsic images from image sequences,”

» Yair Weiss. ICCV 2001

“Estimating intrinsic images from image sequences
with biased illumination,”

» Matsushita, Lin, Kang, Shum. ECCV 2004
“Estimating intrinsic component images using
non-linear regression,”

» Tappen, Adelson, and Freeman. CVPR 2006

“User-assisted intrinsic images”

» Bousseau, Paris, and Durand. SIGGRAPH Asia 2009



Intrinsic images

An image is decomposed into a reflectance image and
an illumination image

» An ill-posed problem /(x,y) = R(x, y)L(x,y)

A useful midlevel description of scenes

» Viewpoint dependent

» The physical causes of changes in illumination at different
points are not made explicit

&



Advantages of the intrinsic representation

» The task of segmentation may be poorly defined on the
input image and many segmentation algorithms make use
of arbitrary thresholds in order to avoid being fooled by
illumination changes

» On an intrinsic reflectance image even primitive

segmentation algorithms would correctly segment the
region of an object




Advantages of the intrinsic representation (cont.)

View-based template matching and shape-from-shading would
be less brittle if they could work on the intrinsic image
representation rather than on the input image




Deriving intrinsic images from image sequences

Given a sequence of T images {/(x,y,t)}.; in which the
reflectance is constant over time and only the illumination
changes, can we then solve for a single reflectance image
R(x,y) and T illumination images {L(x,y,t)},,?

I(x,y,t) = R(x,y)L(x,y,t)

The problem is still ill-posed: at every pixel there are T
equations and T + 1 unknowns. One can simply set
R(x,y) =1and L(x,y,t) = I(x,y,t).



Example




ML estimator assuming sparseness

Transform the problem into log domain

i(x,y,t)=r(x,y) +lx,y,t).

To make the problem solvable, we want to assume a
distribution over ¢(x, y, t).



First thought

» lllumination images are of lower contrast than reflectance
images?’
» It is rarely true for the outdoor scenes

» Edges due to illumination often have as high a contrast as
those due to reflectance changes




Statistics of natural images

When derivative filters are applied to luminance in natural
images (in log domain), the filter outputs tend to be sparse.

» Peaked at zero and fall off much faster than a Gaussian




Lecture videos about natural images

Yair Weiss and Bill Freeman: What makes a good
model of natural images? (CVPR 2007)

» Weiss's talk given at UC Berkeley on February 20, 2007

» http://www.archive.org/details/Redwood_
Center_2007_02_20_Yair_Weiss

From Learning Models of Natural Image Patches to
Whole Image Restoration

» Zoran's talk given at UC Berkeley on March 1, 2012

» http://archive.org/details/Redwood_Center_
2012_03_01_Daniel_Zoran


http://www.archive.org/details/Redwood_Center_2007_02_20_Yair_Weiss
http://www.archive.org/details/Redwood_Center_2007_02_20_Yair_Weiss
http://archive.org/details/Redwood_Center_2012_03_01_Daniel_Zoran
http://archive.org/details/Redwood_Center_2012_03_01_Daniel_Zoran
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How to use the sparseness property?

Assume we have N filters {f,} and we denote the filter
outputs by o,(x,y,t) =i xf,.

We use r, to denote the reflectance image filtered by the nth
filter r, = r x f,.



Claim 1

Assume filter outputs applied to ¢(x, y, t) are Laplacian
distributed and independent over space and time. Then the
maximum likelihood (ML) estimate of the filtered reflectance
image 7, are given by

Pa(x,y) = median; o,(x,y, t).



Proof of Claim 1

Assuming Laplacian densities and independence yields the
likelihood
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Maximizing the likelihood is equivalent to minimizing the sum
of absolute deviations from o,(x, y, t). The sum of absolute
values (or Lj-norm) is minimized by the median.



What does Claim 1 imply?

Claim 1 gives us the ML estimate for the filtered reflectance
images 7,. To recover an estimated reflectance 7,, we solve the
overconstrained systems of linear equations

fhx? =7,



Over-constrained linear system
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What does Claim 1 imply?

Claim 1 gives us the ML estimate for the filtered reflectance
images 7,. To recover an estimated reflectance 7,, we solve the
overconstrained systems of linear equations

fLx?t="7,.

It can be shown that the pseudo-inverse solution is given by

F=gx* (an’*?,,>

with f! the reversed filter of £, : f,(x,y) = f(—x,—y) and g

a solution to
g * <anr*f,,> =4.
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Note
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Example

frame 1 horiz filter vertical filter
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frame 2 vertical filter
frame 3 horiz filter vertical filter
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reflectance image
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Claim 2

Let p. = P(|f, x {(x,y,t)| < €). Then the estimated filtered
reflectances are within € of the true filtered reflectances with
probability at least
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Proof of Claim 2

If more than 50% of the samples of £, x ¢(x, y, t) are within €
of some value, then by the definition of the median, the
median must be within € of that value. The claim follows from
the binomial formula for the sum of T independent events.
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Toy example
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Yale face database

» 64 images taken with variable lighting

frame 2 frame 11




UC Berkeley webcam

ML illumination 1 ML illumination 2



What if the illumination is biased?

Estimating intrinsic images from image sequences
with biased illumination

» Matsushita, Lin, Kang, Shum. ECCV 2004



Intrinsic images

I(x,y,t) = p(x,y)L(x,y,t)
= p(yH{Lo(x,y,t) +alx,y, t)}
= p(x, y){E(t)g(x.y,t)(n(x,y) - 1(t)) + a(x,y, t)}
= p(x.Y)E(t){g(x.y. t)(n(x,y) - (1)) + ' (x,y, )}

p(x,y): reflectance

E(t): illumination intensity
g(x,y, t): binary shadow map
n(x,y): surface normal

I(t): illumination direction
a(x,y,t): ambient light



Review: filtered reflectance and filtered illumination

log pn(x,y) = median{f, xlog I(x,y, t)}
log Lo(x,y, t) = foxlog I(x,y,t) — log fa(x, y)

(log p,log L) = h* (Z fy * (log pn, log Zn)>

m(Zf;*fn) =



Unbiased illumination samples

For two adjacent pixels with intensities /;(t) and /(t)

h(e) o E(0{e (m () o)
h(2) ‘p E(0)g (n21(0) + o}

Assumption: cast shadows do not affect the median

pn = median

L

unbiased illumination samples: m
median/(t)egt ng - |(t) —ny- |(t) =0

Pn = pl/p2



Biased illumination
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Hard constraints
Inter-frame constraint (constant reflectance)

Io(t) _ Lp(t)
b(t)  Lp(f)’
N: # of observations

0<ij<N,ij.

Inter-pixel constraint

lp(ti) _ Pr. Lp(ti)
lq(ti) Pq Lq(ti)7

wp: neighborhood

0<i<N,gcw,




Flatness

epq(ti) =

/ /
arctan {mediant (—p) } — arctan {—p}
Iy Iy

[ 1 (epq(ti) < e€:accept)
Epg(ti) = { 0 (eZZ(t,-) > € : reject)

fro = (Z;él,\alq(ti)>2




Energy minimization based on smoothness
constraints

Eq = ZE (App, ALy(t))

= Z Z{ 2+ AMog () (Lp(ti) — Lq(t’))2}

P g€wp
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Algorithm

Step 1: Initialization

Step 2: Hard constraints



Step 2: Hard constraints

1. Inter-frame constraint. Update L,(t;).

Ly(t) — Z(I‘”“")L (tj))/(zv 1) (16)

i Ip(tj) "

2. Inter-pixel constraint. Update L,(t;) and p, with ratio error 3. Letting M., be
the number of p’s neighboring pixels,

- L(t:)  paLy(t:)

Since the error ratio 3,(¢;) can be caused by some unknown combination of p
and L, we distribute the error ratio equally to both p and L in (18) and (20),

= (a7)

respectively.
Lp(t:) — \/ Bp(ti) Lp(ti), (18)
Bp = (Zﬁp(tz))/N, (19)
Pp \//8—17917- (20)

3. Return to 1. unless Equation (10) is satisfied.



Algorithm

Step 3: Energy minimization by the conjugate
gradient method

2 = 3Bl AL(D)

_ Z > {0 — Pa)? + Maog(t)(Lp(t:) — Lo(£:))?}

P q&wp

Go back to Step 2 if not converges



Results

reflectance

proposed
method

ground
truth

)

o

ML
estimation




Learning from data

Estimating Intrinsic Component Images Using
Non-Linear Regression

» Tappen, Adelson, and Freeman. CVPR 2006



Estimating Intrinsic Component Images Using

Non-Linear Regression
Estimate a set of local linear constraints, such as the
derivatives, using local image data
» Estimate the filtered versions of the intrinsic component
image
» Use training data to learn to predict the derivatives of the

shading and reflectance images, rather than basing the
estimates on a simple model of the world.

Solve for the image that best satisfies these
constraints, by using a method akin to a
pseudo-inverse

» Horizontal and vertical derivatives are differently weighted



Creating shading and reflectance data of real-world
surface

» How to create ground-truth demopositions

(a) Red Channel (b) Green Channel

» A piece of paper colored with a green marker

» The green channel, containing no markings, is used as the
shading image



Locally estimating constraint values

» Using a patch of the observed image to estimate a
particular pixel of the filtered intrinsic component image

Derivatives of the shading image

Estimate of dx

Estimated Shading Image

Estimate of dy




Learning the estimator

» Training pairs of observed patches and filtered intrinsic
components
(01, Cl) ce (0]\/[, C]\j)

Ul PE

» Minimize the square error
M
E=Y (r(o) - )
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choose N prototype patches {p;} and coefficients {f;} using a
boosting algorithm



Reconstructing the image

Weighted least squares
= (CTwe)y*cTwe

W is block-diagonal

Cax and Cy, denote the matrices that express the 2D image
convolution with each filter as a matrix

&= ?dx
Cdy

¢ contains estimated derivatives



Results

Observed Image Shading Image

from ExpertBoost

(a) Ground Truth (c) Estimated Albedo
Albedo Image after Adjusting Weights




Application to denoising

Use different types of image patches and filters to learn an




User-assisted intrinsic images

(a) Original photograph (b) User scribbles (c) Reflectance (d) Mumination (e) Re-texturing



MIT intrinsic images

» http://people.csail.mit.edu/rgrosse/intrinsic

original shading original shading



http://people.csail.mit.edu/rgrosse/intrinsic

Summary

Find an estimate of filtered intrinsic image

Reconstruct the intrinsic image from the filtered
version
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